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ABSTRACT  

In this study, we propose a kriging algorithm, multiscale-kriging model, to incorporate 

geochemical data observed at multiscales (multi-resolutions). We assume that there are a 

number of measurements at different scales, and that the target scale at which the parameter 

values are needed may be different from the measurement scales. Several synthetic examples 

and the vanadium geochemical data from 8402 stream sediment samples in Zhejiang Province, 

China, have been used to illustrate the method. These examples demonstrate that, by 

incorporating measurements from all scales, the estimated field is better than the field 

estimated using measurements from any individual scale. This method also allows us to 

estimate a parameter field at the scale that does not have any measurements.  

KEYWORDS: kriging, simple multiscale-kriging, multiresolution data, 

geochemical survey 
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Introduction 

Kriging has been widely used in geosciences to incorporate spatially sampled data and to 

estimate the conditional mean field and its associated (co-)variance [Journel and Huijbregts, 

1978; Clark, 1979; Kitanidis, 1997; Deutsch and Journel, 1998; Zhao, 2004]. Although in 

many applications, such as geochemical mapping in a region, samples may be taken at 

different scales (resolutions) in various cycles of geological surveys, quite often these scales 

are different from the scale at which estimates are needed. In other words, we need a 

methodology to incorporate spatially sampled data with different resolutions and obtain the 

reasonable parameter values at a desired scale. Few studies investigated the effect of 

multiscale data on the estimated field. Kupfersberger et al. (1998) studied multiscale 

cokriging with a primary attribute and a second attribute, where the second attribute is 

available at a large scale and the primary attribute is measured at the modeling scale. The 

measurements of the second attribute at large scale are used to improve the estimate of the 

primary attribute. 

In this research, we assume that the parameter of interest is measured at several different 

scales (resolutions). Our aim is to estimate the conditional mean field and conditional 

covariance of the parameter at a target scale, which may be different from measurement scales. 

In addition, measurements may or may not be available at this target scale.  

The paper is organized as follow. In section 2, we first formulate the kriging estimate 

using all measurements at different scales. The covariance functions across different scales, 

which are required in solving the kriging system, are given in Section 3. The applicability of 

the proposed method is then demonstrated in Section 4, using several synthetic examples and 
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a set of vanadium geochemical data measured from 8402 stream sediment samples, followed 

by a short summary.  

Multiscale Simple Kriging 

Let  be a second-order stationary random function defined on domain , characterized by 

the mean  and the unconditional covariance function 

Y Ω

Y〈 〉 ( )YC ,x y , for , . Suppose 

that we have observed  at  different scales (resolutions) , , , 

x

2

∈Ωy

L( )Y x K 1S S KS , and that 

there are  measurements at scale , observed at locations  kN kS ( )k
ix , 1 kNi = ,  and 1k K= , . 

For any  at the scale , which  may be different from any  observation scale , x 0S kS

1= ,k K

iY

, the kriging estimation may be written as a linear combination of all available 

measurements,  
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where coefficients  are determined by minimizing the estimate errors at the ensemble 

sense, which yields the kriging equations  
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where  is the covariance function between scales  and , and ( )k n
YC ,

kS nS (0 )n
YC ,  is 

coveriance between scales  and , which is the scale of being estimated. There are 

 linear equations and  unknowns in Equation (2). Note that coefficients 
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α  are location-dependent, which means that the set of linear algebraic equations in 

Equation (2) have to be solved for each location of interest at scale .  0S
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where (0) (YC ,x )y  is the unconditional covariance between  and x y  at scale , which in 

general is different from the unconditional covariance at other scales. The critical issue in this 

multiscale kriging method is how to find covariance functions within any scale and between 

different scales, which will be elaborated in the next section.  

0S

Determination of Covariance between Different Scales 

For convenience of presentation, we start from the one-dimensional problem. Given a 

second-order stationary random field , where ( )Y x x  is a point in domain , we consider an 

averaged quantity of  over a segment of length  centered at 

Ω

( )Y x T x ,  

 
2

2

1( ) ( )
x T

T x T
Y x Y u du

T
+ /

− /
= .∫                   (4) 

Since  is a spatially random variable, and so is the averaged quantity . It is seen from the 

equation that  has the same mean as the original variable , i.e., 

Y TY

(TY xTY Y ) ( )Y x〈 〉 = 〈 〉 . From 

Equation (4), one can derive the perturbation term as  

 
2

2

1( ) ( )
x T

T x T
Y x Y u du

T
+ /′ ′

− /
= .∫                     (5) 

where Y ′

( ( )T x

stands for the perturbation of the original random variable Y. From this equation, it 

can be shown that the variance of  is different from that of  and can be written as 

, where 

TY Y

2) ( )Yvar Y Tσ γ= 2
Yσ  is the variance of  and Y ( )Tγ  is called the variance 

function [Vanmarcke,1983]. The variance function (T )γ  measures the reduction of the point 

variance under local averaging and may be found as  

 1 2 1 22 0 0 0

1 2( ) ( ) 1 ( )
T T T

T x x dx dx
T T

τ d
T

γ ρ ρ⎛ ⎞= − = −⎜ ⎟
⎝ ⎠∫ ∫ ∫ τ τ .         (6) 

where ρ  is the correlation function of . The variance function satisfies( )Y x ( ) 0Tγ ≥ , 

(0) 1γ = , and ( ) ( )T Tγ γ− = . Note that for a stationary field ,  is also stationary. 

For a general form of covariance function

( )Y x ( )TY x

( )ρ τ , ( )Tγ  in Equation (6) should be evaluated 

numerically. However, for some special correlation functions, ( )Tγ  can be derived 
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analytically. For example, for an exponential correlation function ( ) exp( )ρ τ τ λ= − | | / , where 

λ  is the correlation length of , we have  ( )Y x

 
2

1( )γ γ ( ) 2 1e TT T
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⎜ − /
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and for a Gaussian correlation function 2 2( ) exp( )ρ τ τ λ= − / ,  
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where E  is the error function. Subscript “1" in Equations (7) and (8) denotes variance 

functions for one-dimensional problems, and superscripts “e" and “g" stands for exponential 

and Gaussian covariance functions, respectively. Note that (T lim ( )T T)γ satisfies 0γ→∞ = for 

all these cases, which is the condition for ergodicity in the mean.  

The covariance between two averaged random variables  and , where  and TTY
T

Y ′ T ′  

are two segments in the domain and may represent two different resolutions, can be expressed 

as [Vanmarcke, 1983]  

 
2 3

2

0
( ) ( 1) ( )k k2
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k
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TT
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=

cov Y , = −∑ ,                    (9) 

where  are defined in Figure 1. Although this figure depicts a special case in which  

and  are partially overlapping, Equation (9) is valid no matter whether they are 

overlapping or not. For a given correlation function

kT

′

T

T

ρ , once the variance function γ  is found, 

one can compute  from Equation (9).  ( T Y
cov Y Y ′, )

The above derivations can be easily extended to two-dimensional random fields. The local 

average of a field , where( )Y x 1 2( Ax )x x= , , over a rectangular block  centered at  is 

defined as  

x

 1( ) ( )A A
Y Y d

A
= ,
| | ∫x y y                          (10) 

where  denotes the area of the block . The covariance function between any two blocks A| | A
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A  and , which can be considered as two different resolutions, can be written as 

[Vanmarcke, 1983]  

A′
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where  and  are defined in Figure 2 and the variance function 1kT 2mT γ  is given as  
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In particular, if the covariance of  is an exponential correlation function ( )Y x 1 2( )ρ τ τ, =  

exp( 2 2 )1 1τ λ τ λ− | − | | /| / , where 1λ  and 2λ  are the correlation lengths in 1x  and 2x  

directions, respectively, one has 1 2( )k m 1 1 1 1 2 2( ) (e e
k mT T T T )γ γ λ γ λ, = , ,

2 2
2 2xp( )

, and for an Gaussian 
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1 11 2( ) eρ τ τ τ λ− / τ λ− / 1 2( )k mT T, = ,  γ , = 1 1 2( ) (k mT T1 1

g g
2 )γ λ γ λ, , . 

Similarly, for three-dimensional problems, the local average of the random field  is 

defined as  

( )Y x

 1( ) ( )V V
Y Y

V
d= ,

| | ∫x y y                      (13) 

where  is the block centered at  and V x V| |  is the volume of the block. The covariance 

between two blocks  and V  can be expressed as  V ′

2 3 3 3
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where  and  stand for the volume of blocks V  and V| | V ′| V ′ , and  and , 

, are various lengths defined similarly as in the two-dimensional case, and the 

variance function 

1kT 2mT

1 2 3, ,k m, =
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If the covariance function is exponential correlation function 1 2 3( )ρ τ τ τ, , =  
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1 1exp( τ λ− | | / − 2 2 3 3)τ λ τ λ| | / − | | / , 1 2 3 1 1 1 1 2 2 1 1 3( ) ( ) ( ) (e e e
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the Gaussian correlation function ρ τ τ τ τ λ τ λ τ λ, , = − / − / − /

2 1 2 3) ( )g
nT
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1 2 3( )k m nT T T 1 1 1 1 2( )g g
k mT T(γ γ λ γ= , λ γ λ, ,, , .  

It should be noted that the above derivations can be easily extended to the case with 

space-dependent mean field. In this case, ordinary kriging rather than the simple kriging 

should be used. Finally, we should also point out that the method presented by this paper, as 

the traditional single-scale kriging method, is mainly suitable for processing the geochemical 

data that follow a normal distribution or log-normal distribution. 

Illustrative Examples 

In this section, we first demonstrate the validity of the proposed method for estimating 

parameter fields at different scales by using several synthetic examples, and then the method 

is applied to the vanadium geochemical data measured from stream sediment samples in 

Zhejiang Province, China. 

Synthetic Examples 

In each of following examples, we generate a random field at a finest scale, given 

statistics (mean, variance, and correlation lengths) of the field. By local averaging, we derive 

fields at different coarse scales, and consider these fields as “true” fields. We then take a 

number of samples at these scales. Using these samples, we estimate the kriged fields and 

their corresponding conditional covariance at different scales and compare these kriged fields 

to the “true" fields to assess the performance of the multiscale kriging method.  

In the first example, we consider a one-dimensional column of length 256 (at any 

consistent unit), discretized into 256 grid of size 1. The reason we choose this 

one-dimensional problem is that the effect of adding conditional points at different scales can 

be easily illustrated. A random field with zero mean, unit variance, and separately, isotropic 

exponential covariance function of a correlation length  is generated at this grid, using the 

Karhunen-Loève decomposition method [Zhang and Lu, 2004]. This field is taken as the true 

20
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field at this finest scale ( ). At any coarse scale, the true field is computed from the finest 

scale using Equation (4). We calculate the “true" fields at two coarse scales, at ( ) 

and ( ), which correspond to grids of 128 and 64, respectively. All these three “true" 

fields will be used to assess the accuracy of the kriged fields.  

1S

16

2xΔ = 2S

4xΔ = 3S

We then take 1N = (fine-scale set) and 3 4N = (coarse-scale set) samples at scales  

and , respectively. The locations of the fine-scale samples are marked in Figure 3 as 

triangles below the horizontal axis, and the locations of the coarse-scale samples in the top of 

each diagram as inverted triangles. There is no data at the intermediate scale . Our purpose 

is to estimate the conditional mean and conditional covariance of the field at all three scales , 

,and .  

1S

1S

3S

3S

2S

2S

The estimated mean fields at three different scales are illustrated in Figure 3. Figure 3A 

compares the finest scale true field (256 grids, red curves) and the estimated field created by 

the single-scale kriging method using the fine-scale measurements alone (green curve) as well 

as the estimated field obtained by the multi-scale kriging model using both coarse- and 

fine-scale measurements (blue curve). It is seen from the figure that, although the estimate 

using the fine-scale measurements alone captures the general trend of the true field, 

incorporating coarse-scale measurements does improves the estimate locally. The range of 

influence of the coarse-scale measurements depends on the correlation length of the original 

unconditional fields. In the regions that are far away from the coarse-scale measurements, 

these measurements do not have a significant impact on estimates. In addition, at this finest 

scale, the estimate using multiscale measurements (blue curve) honors the fine scale 

measurements, but it does not honor the coarse-scale measurements. The estimation errors 

using different sets of data can be measured using the root-mean-squared error (RMSE). The 
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RMSE is reduced from 0.746 for the kriged field using the fine-scale measurements only to 

0.686 using both the fine- and coarse-scale measurements.  

Figure 3B shows that at the coarse scale (64 grids ) the kriged field obtained from the 

single-scale kriging method using the coarse-scale measurements alone (the green curve) also 

captures the general trend of the true field (red curves) and honors the measurements at this 

scale, but it is relatively smooth and does not provide detailed variability of the field. By 

incorporating the fine-scale measurements with the multiscale kriging model, the estimate has 

been significantly improved (blue curve). The RMSE is reduced from 0.754 for the kriged 

field using the coarse-scale measurements alone to 0.601 using both the fine- and coarse-scale 

measurements. Note that the estimate at the coarse scale in general will not honor the 

fine-scale measurements.  

It should be pointed out that, although the blue curves in Figures 3A and 3B are kriged 

fields obtained by the multiscale kriging model using both coarse- and fine-scale 

measurements, these two fields differs slightly, because they represent the conditional mean 

fields at two different scales.  

Figure 3C illustrates the kriging estimates using all measurements for the scale 2=Δx , at 

which there is no measurement at all. In general, both coarse- and fine-scale measurement are 

not honored at this scale. However, it is seen that the estimated field created by multiscale 

kriging model is reasonably close to the true field at this scale.   

Figure 4 depicts the conditional variance of estimated fields at three different scales. At 

the fine scale, as shown in Figure 4A, using the measurements at this scale alone reduces the 

conditional variance significantly, especially near the measurement locations, where the 
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conditional variance is zero (see red curve). Conditional variance is further reduced once the 

coarse-scale measurements are taken into account (blue curve). Although the conditional 

variance at the coarse-scale measurement locations has been significant reduced, the variance 

is not exactly zero, because knowing a value at a location at the coarse scale is not enough to 

infer the exact value at the same location at the fine scale. The same is true at the coarse scale, 

as illustrated in Figure 4B. At this coarse scale, the conditional variance at the fine-scale 

measurement locations is not zero, though it is very small (blue curve). At scale , where 

there is no measurement available, the conditional variance is not zero at all coarse- or 

fine-scale measurement locations (Fig. 4C), but the conditional variance at this scale has been 

significantly reduced, as compared to the unconditional variance of 

2S

2 0 951Yσ = .  at this scale.  

In the second case, we consider a two-dimensional domain of 128×128, discretized into 

 elements (scale , 16384 elements in total). A random field with zero mean, unit 

variance, and an isotropic separable exponential covariance function of correlation length 

1 1× 1S

20λ =  is generated using the Karhunen-Loève decomposition method [Zhang and Lu, 2004]. 

From this field, two additional fields of grids × 64 (scale , 64 2S 2x yΔ = Δ = , and 4096 

elements) and  × 32 (scale , 32 3S 4x yΔ = Δ = , and 1024 elements) are derived using 

Equation (10). These three fields are considered as “true" fields. Suppose that 1 50N =  

measurements are taken from fine scale , 1S 3N 10=  measurements from coarse scale , and 

no observation is available at the intermediate scale . The locations of these measurements 

are displayed in Figure 5.  

3S

2S

Figure 6 compares the true field at the finest scale (Fig. 6A) with the kriged field 

obtained from the single-scale kriging method using the fine-scale measurements alone (Fig. 
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6B) and the kriged field created by the multiscale kriging model using measurements at both 

fine and coarse scales (Fig. 6C). The figure shows that the kriged field using the fine-scale 

measurements alone captures the most of the heterogeneities of the true field but 

incorporating additional measurements at the coarse scale using the multiscale-kriging 

method improves the accuracy of the estimated field slightly. The root mean square error of 

the kriged fields is reduced from 0.750 for the estimated field using the fine-scale 

measurements to 0.684 for the field estimated using measurements at both the fine and coarse 

scales.  

Figure 7 illustrates the comparison between the fields of the conditional variance at the 

fine scale, conditioned at fine-scale measurements only (Fig. 7A) and at both fine- and 

coarse-scale measurements (Fig. 7B). A significant reduction of the local conditional variance 

is evident around the coarse-scale conditioning points by incorporating coarse-scale 

measurements in estimating the fine-scale field.  

At the coarse scale, since only a small number of measurements are available, the kriged 

field using these coarse-scale measurements alone is very close to a relatively uniform, 

unconditional mean field, as illustrated in Figure 8B. However, if the fine-scale measurements 

are also incorporated into the kriged field, it becomes much close to the true field (Fig. 8C). 

The root mean square error of the kriged fields at the coarse scale is reduced from 0.865 for 

the estimated field using the coarse-scale measurements to 0.619 for the field estimated using 

measurements at both the fine and coarse scales.  

It should be noted again that the fields presented in Figures 6C and 8C are slightly 

different, even though both of them are kriged fields using all fine- and coarse-scale 
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measurements. These two fields represent conditional fields at two different scales.  

Figure 9 compares the conditional variance at the coarse scale, using coarse-scale 

measurements alone (Fig. 9A) and using all coarse- and fine-scale measurements (Fig. 9B). 

The figure demonstrates that incorporating fine-scale measurements significantly reduces the 

conditional variance at the coarse scale.  

At the intermediate scale, where there is no data available, the conditional mean and 

variance can be estimated from measurements at other scales. Figure 10 compares the true 

field at this scale (Fig. 10A) against the estimated conditional mean field using measurements 

at both fine and coarse scales (Fig. 10B). Figure 11 illustrates the conditional variance at this 

intermediate scale by using measurements at other two scales. It is seen from these figures 

that the conditional mean field estimated using measurements at other scales is close to the 

true field and that the conditional variance can be significantly reduced. This example 

demonstrates that this multiscale simple kriging method can be used to estimate the 

conditional mean and variance fields at any scale where there is no data available, as long as 

measurements are available at some other scales.  

Application to Geochemical Surveyed Data 

    In the previous discussion, our method has been tested on several synthetic examples in 

general. Here, the vanadium (V) geochemical data measured from 8402 stream sediment 

samples in Zhejiang Province, China, are used to further demonstrate the validity of the 

multiscale kriging method. These stream sediment data are supplied by the Zhejiang 

Geophysical and Geochemical Exploration Institute. The samples were collected at the mouth 

of first-order streams or in the connected second-order stream in 1980−1986. Figure 12 shows 
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the spatial distribution of the total 8402 sample stations (in the figure, 14641 meshes in total, 

of which 6239 meshes are empty). At each sampling station, sediment was gathered at four 

points with an average sampling density of 1 point /1 km2. Samples from each station were 

composed of an equal weight of sediment from these four sampling points. The minimum 

weight of each sample is 2.5kg. The composite samples from these stations, with an average 

density of one sample per 4 km2，were submitted to the laboratory for chemical analysis. The 

content of vanadium was determined by the X-ray fluorescence spectrometry analysis with 

the detection limit of 15 ppm. Figure 13 illustrates the result obtained for the V data as a 

histogram and “Probability–Probability” plot (P–P plot). It is shown that these V content 

measurements follow a normal distribution. 

    We consider these original measured data (contrast set) on the grid of 2×2-km (one 

sample per 4 km2) as the spatially distributed dataset at the finest scale, from which the 

vanadium content at two additional coarser scales of 8×8-km (Set A, 3660 meshes, 2084 

measured samples in total) and16×16-km (Set B, 915 meshes, 524 measured samples in total) 

are derived. Because of space limit, we here only discuss the comparison of the conditional 

variance for a one-dimensional column A’1—A’121 of length 121 as indicated in Figure 12. It 

is seen from Figure 14 that the conditional variance of the estimated field created by the 

multiscale Kriging method using both Sets A and B (green curve) is obviously smaller than 

that of single-scale Kriging method alone using Set A (red curve), because more information 

(Set B) has been used in the multiscale kriging. Since the traditional simple kriging cannot be 

applied to the case of multiscale data points, to make our comparisons more reasonable, we 

map set B (which is on the 16×16-km support scale) onto the support scale of 8×8-km and 
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combine the resulted dataset with set A (which is also on 8×8-km) to form the dataset C (3660 

meshes, of which 2608 meshes have samples). The conditional variance from the simple 

kriging using this combined dataset C is also compared with the conditional variance from the 

multiscale kriging method using Sets A and B. The figure indicates that, using the same 

dataset, the multiscale kriging method may produce more accurate results than the 

single-scale kriging method, even though the same set of measurements is used (comparing 

green and blue curves). The reason is that, if multi-scale data are available, the multiscale 

kriging effectively take the scale information into account, while in the single-scale kriging, 

such scale information has been lost. 

Summary and Conclusions 

In this study, we propose a simple multiscale kriging algorithm to incorporate data observed at 

multiscales (multi-resolutions). We assume that there are a number of measurements at 

different scales that may be different from the target scale at which the parameter values are 

needed. Similar to the simple kriging, the parameter at the target scale is represented as a 

linear combination of all available measurements and the coefficients in this linear 

combination are solved from the kriging system, which is related to covariance functions 

across the scales. The key point in this method is to find the covariance functions between 

blocks at different scales. We illustrated the method using several one-dimensional and 

two-dimensional synthetic examples as well as measured geochemical data.  

These examples demonstrate that, at any scale at which some measurements are available, 

by incorporating measurements from all scales, the estimated field is better than the field 

estimated only using the measurements at this scale.  
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Second, if measurements are available at the target scale, these measurements will be 

honored. However, measurements at other scales will not be honored at the target scale, even 

though they will reduce the conditional covariance at the target scale.  

Furthermore, this method allows us to estimate a parameter field at the scale that does 

not have any measurements. In this case, the conditional mean field and conditional 

covariance can be found using measurements at other scales. Of course, all measurements will 

not be honored at the target scale. The method may be useful in some applications, such as 

numerical adaptive mesh refinement.  

Acknowledgements 

We are grateful to Prof. Pengda Zhao for having provided a very helpful review of the 

manuscript. We would like to thank the J. Geochemical Exploration reviewers for their 

valuable comments, which have improved the paper significantly. 

REFERENCES 

Clark, I., Practical Geostatistics, Applied Science Publishers, 1979.  

Deutsch, C. V., and Journel A. G., GSLIB, Geostatistical Software Library and User’s Guide, 

Second Edition, Oxford University Press, 1998.  

Journel, A. G. and Huijbregts C., Mining Geostatistics, Academic Press, 1978.  

Kitanidis, P. K., Introduction to Geostatistics, Applications in Hydrogeology, Cambridge 

University Press, 1997.  

Kupfersberger, H., Deutsch, C. V., Journel, A. G., Deriving constraints on small-scale 

variograms due to variograms of large- scale data, Math. Gol., 30(7), 837-852, 1998.  

Vanmarcke, E, Random fields: Analysis and Synthesis, The MIT Press, 1983.  

 16



Zhang, D. and Lu, Z. , An efficient, higher-order perturbation approach for flow in randomly 

heterogeneous porous media via Karhunen-Loève decomposition, J. of Comput. Phys., 

194(2), 773-794, 2004.  

Zhao, P. (eds), Quantitative Geoscience: Methods and its applications. Higher Education 

Press, Beijing, 2004. 

 17



Figure Captions  
 

Figure 1 Schematic diagram defining various distances characterizing the relative positions of 

two segments.  

Figure 2 Schematic diagram defining various distances characterizing the relative positions of 

two rectangular blocks.  

Figure 3 Comparison of the one-dimensional true fields and kriged mean fields at three scales: 

(A) fine scale, (B) coarse scale, and (C) the intermediate scale at which no measurements 

are available. Triangles below the horizontal axis show the locations of the fine-scale 

samples, and inverted triangles along the upper horizontal axis depict the locations of the 

coarse-scale samples (see the text). 

Figure 4 Comparison of the conditional variance for the one-dimensional case computed 

using different sets of data at three scales: (A) fine scale, (B) coarse scale, and (C) the 

intermediate scale at which no measurements are available. Triangles below the horizontal 

axis show the locations of the fine-scale samples, and inverted triangles along the upper 

horizontal axis depict the locations of the coarse-scale samples(see the text). 

Figure 5 Locations of conditioning points in the two dimensional example with 1 50N =  

(circles) and  (squares).  3 10N =

Figure 6 Comparison of the true field (A), and the kriged mean fields using fine-scale data (B), 

and multiscale data (C), at the two-dimensional fine scale.  

Figure 7 Conditional variance at the fine scale, computed using fine-scale data only (A), and 

multiscale data (B).  

Figure 8 Comparison of the true field (A), and the kriged mean fields using fine-scale data (B) 
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and multiscale data (C), at the coarse scale.  

Figure 9 Conditional variance at the coarse scale, computed using fine-scale data only (A), 

and multiscale data (B).  

Figure 10 Comparison of the true field (A), and the kriged field using multiscale data (B), at 

the intermediate scale where no measurements are available.  

Figure 11 Conditional variance at the intermediate scale using multiscale data.  

Figure 12 Locations of stations sampling stream sediments in Zhejiang Province, China.  

Figure 13 Histogram and P–P plot for the vanadium content in stream sediments (8402 

samples) from Zhejiang Province: (a) histogram; and (b) P–P plot. 

Figure 14 Comparison of the conditional variance for the one-dimensional case computed 

using different sets of vanadium geochemical data measured from stream sediments. 
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